If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-8w-9=0
a = 4; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·4·(-9)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{13}}{2*4}=\frac{8-4\sqrt{13}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{13}}{2*4}=\frac{8+4\sqrt{13}}{8} $
| K^2+6k=0.9 | | (x+2)*7=x+38 | | x-3/4x=1/3x-1 | | 8x-16=133 | | 8x-6=16x+4 | | 2+3i=12-15i | | (x)/(3)=(6)/(27) | | 6y+3y=25 | | 140=n^2-4n | | X³+27=(x+3)(x²+3x-9) | | X³+64=(x+4)(x²-8x+16) | | 4x−8=3x−87 | | 2x+15/5=−9 | | 3h=347 | | 5-4k/10=10 | | 9x+4x=40 | | 2u-48=-5(u+4) | | 231x+3619=3x^2+134x+1363 | | 300+20x-x^2=0 | | 675=(n-2)*180 | | 30x+5x^2-200=0 | | X2-30x-2000=0 | | 0=300-20x+x^2 | | 5p–2=3p+10 | | 0.25x2-1=16 | | 90+1240+8x+x=360 | | 130+80+2x+x=360 | | x-180+35+2x+97=360 | | 5x+10x+9=20+x | | 150=10w+5*(2w/3) | | 2x^+45x+238=0 | | X+X+20=30+60+x |